engway
مرحبا بك زائرنا الكريم
تسجيلك معنا يدفعنا للامام واهلا بك كعضو فى منتدانا
engway
مرحبا بك زائرنا الكريم
تسجيلك معنا يدفعنا للامام واهلا بك كعضو فى منتدانا
engway
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

engway


 
الرئيسيةالبوابة*أحدث الصورالتسجيلدخول
Gamma Function 138509587

 

 Gamma Function

اذهب الى الأسفل 
كاتب الموضوعرسالة
m_mohsen
.
.
m_mohsen


المشاركات : 439
الهوايات : الكوره
تاريخ التسجيل : 06/03/2009

Gamma Function Empty
مُساهمةموضوع: Gamma Function   Gamma Function I_icon_minitimeالإثنين نوفمبر 16, 2009 4:15 am

Many important functions in applied sciences are defined via improper
integrals. Maybe the most famous among them is the Gamma
Function
. This is why we thought it would be a good idea to have a
page on this function with its basic properties. You may consult any
library for more information on this function.


Historically the search for a function generalizing the factorial
expression for the natural numbers was on. In dealing with this
problem one will come upon the well-known formula

Gamma Function Img1

A very quick approach to this problem suggests to replace n by x
in the improper integral to generate the function

Gamma Function Img2

Clearly this definition requires a close look in order to determine
the domain of f(x). The only possible bad points are 0 and
Gamma Function Img3 . Let us look at the point 0. Since Gamma Function Img4 when Gamma Function Img5 , then we have

Gamma Function Img6

when Gamma Function Img5 . The p-test implies that we have convergence
around 0 if and only if -x < 1 (or equivalently x >-1). On the
other hand, it is quite easy to show that the improper integral is
convergent at Gamma Function Img3 regardless of the value of x. So the
domain of f(x) is Gamma Function Img7 . If we like to have
Gamma Function Img8 as a domain, we will need to translate the x-axis to
get the new function
Gamma Function Img9
which explains somehow the
awkward term x-1 in the power of t. Now the domain of
this new function (called the Gamma Function) is Gamma Function Img8
. The above formula is also known as Euler's second integral
(if you wonder about Euler's first integral, it is coming a little
later).

Basic Properties of Gamma Function Img10
Gamma Function Img11 First,
from the remarks above we have Gamma Function Img12
Gamma Function Img11
One of the most important formulas satisfied by
the Gamma function is Gamma Function Img13 for any x > 0.
In order to show this formula from the definition of
Gamma Function Img14 , we will use the following identity
Gamma Function Img15 (this is just an integration by parts). If we let a goe to 0 and
b goe to Gamma Function Img3 , we get the desired identity.
In particular, we get
Gamma Function Img16 for any x > 0 and any integer Gamma Function Img17 . This formula makes it
possible for the function Gamma Function Img14 to be extended to Gamma Function Img18
(except for the negative integers). In particular, it is enough to know
Gamma Function Img14 on the interval (0,1] to know the function for any x > 0.
Note that since
Gamma Function Img19 we get Gamma Function Img20 . Combined with the above identity, we get what we
expected before :
Gamma Function Img12 Gamma Function Img11
A careful analysis of the Gamma function (especially
if we notice that Gamma Function Img21 is a convex
function) yields the inequality
Gamma Function Img22 or equivalently
Gamma Function Img23 for every Gamma Function Img17 and x >0. If we let n goe to Gamma Function Img3 , we
obtain the identity
Gamma Function Img24 Note that this formula identifies the Gamma function in a unique
fashion.
Gamma Function Img11
Weierstrass identity. A simple algebraic
manipulation gives
Gamma Function Img25 Knowing that the sequence Gamma Function Img26
converges to the constant -C, where






Gamma Function Img27




is the Euler's constant. We get





Gamma Function Img28




or





Gamma Function Img29




Gamma Function Img11
The logarithmic derivative of the Gamma
function:
Since Gamma Function Img30 for any x >0, we can take the logarithm of the
above expression to get
Gamma Function Img31
If we take the derivative we get
Gamma Function Img32 or
Gamma Function Img33 In fact, one can differentiate the Gamma function infinitely often.
In "analysis" language we say that Gamma Function Img14 is of
Gamma Function Img34 -class. Below you will find the graph of the Gamma
function.

Gamma Function Gamma






The Beta Function


Euler's first integral or the Beta function: In
studying the Gamma function, Euler discovered another function, called
the Beta function, which is closely related to Gamma Function Img14 .
Indeed, consider the function
Gamma Function Img35 It is defined for two variables x and y. This is an
improper integral of Type I, where the potential bad points are 0 and
1. First we split the integral and write
Gamma Function Img36
When Gamma Function Img5 , we have
Gamma Function Img37 and when Gamma Function Img38 , we have
Gamma Function Img39 So we have convergence if and only if x > 0 and y >0 (this is done
via the p-test). Therefore the domain of B(x,y) is x > 0 and
y>0. Note that we have
Gamma Function Img40 Let a and b such that Gamma Function Img41 , we have (via an integration
by parts)
Gamma Function Img42 If we let a goe to 0 and b goe to 1, we will get
Gamma Function Img43 Using the properties of the Gamma function, we get
Gamma Function Img44 or
Gamma Function Img45 In particular, if we let x=y = 1/2, we get
Gamma Function Img46 If we set Gamma Function Img47 or equivalently Gamma Function Img48 , then the technique of substitution implies
Gamma Function Img49 Hence we have
Gamma Function Img50 or
Gamma Function Img51 Using this formula, we can now easily calculate the value of
Gamma Function Img52 .



Other Important Formulas:



The following formulas are given without detailed proofs. We hope
they will be of some interest.



Gamma Function Img11

Asymptotic behavior of the Gamma function when
x is large:
We have
Gamma Function Img53 where
Gamma Function Img54 If we take, x=n, we get after multiplying by n
Gamma Function Img55 This is a well known result, called Stirling's formula. So for large n, we
have
Gamma Function Img56
Gamma Function Img11

The connection with Gamma Function Img57 : For any x >
0, we have
Gamma Function Img58 which implies
Gamma Function Img59 Using the Weierstrass product formula (for Gamma Function Img14 and
Gamma Function Img60 ), we get
Gamma Function Img61 If we use the Beta function (B(x,y)), we get the following formulas:
Gamma Function Img62
الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://engway.ahlamountada.com
 
Gamma Function
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
engway :: الملتقى الهندسى :: هندسة الانتاج-
انتقل الى: